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Abstract— We consider continuous-time consensus systems
whose interactions satisfy a form or reciprocity that is not
instantaneous, but happens over time. We show that these
systems have certain desirable properties: They always converge
independently of the specific interactions taking place and there
exist simple conditions on the interactions for two agents to
converge to the same value. This was until now only known
for systems with instantaneous reciprocity. These result are of
particular relevance when analyzing systems where interactions
are a priori unknown, being for example endogenously deter-
mined or random. We apply our results to an instance of such
systems.

I. INTRODUCTION

We consider systems where n agents each have a value
xi ∈ R that evolves according to

ẋi =

n∑
j=1

aij(t)(xj(t)− xi(t)), (1)

where the aij(t) ≥ 0 are non-negative functions of time. This
means that the value of xi is continuously attracted by the
values of the agents j for which aij(t) 6= 0. These systems
are called consensus systems because the interactions tend
to reduce the disagreement between the interacting agents,
and because any consensus state where all xi are equal is
an equilibrium of the system. Analogous systems also exist
in discrete time [14], [20], [27]. Consensus systems play
a major role in decentralized control [16], data fusion [3],
[30] and distributed optimization [9], [21], but also when
modeling some animal [7], [28] or social phenomena [5],
[17].

General convergence results for consensus systems involve
connectivity assumptions that are hard to check for state-
dependent interactions, and do not allow treating clustering
phenomena. As detailed in the state of the art, more recent
results guarantee convergence to one or several clusters under
various assumptions on the symmetry or reciprocity of the
interactions. All these reciprocity properties have however
to be satisfied instantaneously and at every time. We extend
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them to treat systems where reciprocity is not instantaneous
but happens on average over time.

This extension only holds under certain assumptions on
the way reciprocity occurs. Indeed, non-instantaneous reci-
procity may fail to ensure convergence and lead to oscillatory
behaviors when the interaction weights are not properly
bounded, or when the time periods across which it occurs
grow unbounded (see Section III-B for an example). To prove
our result we show that, for an appropriate sequence of
times tk, the states x(tk) can be seen as the trajectory of
a certain discrete time consensus system. By analyzing the
effect of each matrix of this system on some artificial initial
conditions, we obtain bounds on their coefficients, and show
that this system satisfies reciprocity conditions guaranteeing
convergence.

The rest of the paper is organized as follows. The introduc-
tion includes a state of the art on consensus systems, a section
pointing out the interest of non-instantaneous reciprocity
and a summary of our contributions. Section II formally
introduces the system that we are considering and presents
our main results. Examples illustrating our results and the
necessity of an underlying assumption are then presented
in Section III. In Section IV, we demonstrate the use of our
results on a specific multi-agent applications. Sections V and
VI contain the proofs, and we finish by some conclusions in
Section VII.

State of the art

Consensus systems have been the object of many studies
during the recent years, focusing particularly on finding
conditions under which the system converges, possibly to
a consensus state, but also on the speed of convergence.
Classical results typically guarantee convergence to consen-
sus under some (repeated) connectivity conditions on the
interactions, see for example [14], [20], [29] or [22], [23]
for surveys.

Different recent works have shown that stronger results
hold when the interactions satisfy some form of reciprocity.
Hendrickx and Tsitsiklis have for example introduced the
cut-balance assumption on the interactions [13], stating that
there exists a K such that for every subset S of agents and
time t, there holds∑

i∈S,j 6∈S

aij(t) ≤ K
∑

i∈S,j 6∈S

aji(t). (2)

This assumption can actually be shown to mean that when-
ever an agent i influences agent j indirectly, agent j also
influences agent i indirectly, with an intensity that is within a



constant ratio of that of i on j. Particular case of this assump-
tions include symmetric interactions aij = aji, bounded-
ratio symmetry aij ≤ Kaji, or any average-preserving
dynamics

∑
j aij =

∑
j aji for every i. It was shown in [13]

that systems satisfying the cut-balance assumption (2) always
converge, though not necessarily to consensus. Moreover,
two agents’ values converge to the same limiting value if they
are connected by a path in the graph of persistent interactions
(also called unbounded interactions in the literature) , defined
by connecting i and j if

∫∞
t=0

aij(t) is infinite. These results
allow analyzing the convergence properties of systems with
relatively complex interactions; see the discussion in [13] for
an example in opinion dynamics, or [8] for an application to
system involving event-based ternary control of second order
agents.

Martin and Girard have later shown [18] that in the
case of convergence to a global consensus, the cut-balance
assumption could be weakened, allowing for the interaction
ratio bound K to slowly grow with the amount of interactions
that have already taken place in the system. They also
provide an estimate of the convergence speed in terms of
the interactions having taken place.

Related convergence results were also proved for systems
involving a continuum of agents under a strict symmetry
assumption in [11]. Finally, we note that similar results of
convergence under some reciprocity conditions have been
obtained for discrete time consensus systems, see for exam-
ple [2], [15], [20], [25], [26]. However, none of these results
allow for non-instantaneous reciprocity.

Non-instantaneous reciprocity

All the results taking advantage of reciprocity require
the reciprocity condition to be satisfied instantaneously at
(almost) all times. They would thus not apply to systems that
are essentially reciprocal, but where the reciprocity may be
delayed, or happen over time. In systems relying on certain
wired or wireless network protocols, agents may be unable
to simultaneously send and receive information, resulting in
loss of instantaneous reciprocity, even if the interactions are
meant to be reciprocal. Non-instantaneous reciprocity also
arises in a priori symmetric systems where the control of the
agents is event-triggered or self-triggered. Indeed, suppose
that at some time the conditions are such that agents i and
j should interact. It is very likely that one agent will update
its control action before the other, so that during a certain
interval of time the actual interactions will not be symmetric.

Similar problems are present in systems prone to oc-
casional failures, or unreliable communications, where the
communication between two agents can temporarily be in-
terrupted in one direction for a limited amount of time.

Issues with non-instantaneous reciprocity may also arise
in swarming processes or in any multi-agent control problem
due to the limited scope of sensors. Suppose indeed that the
sensors are not omnidirectional, as it is for example the case
for human or animal eyes. It is then generally impossible for
an agent to observe all its neighbors at the same time. The
same issue arises if the agent can only treat a limited number

of neighbors simultaneously. A natural solution is then to
observe a subset of the neighbors and to periodically modify
the subset being observed. This can for example be achieved
by continuously rotating the directions in which observations
are made. In that case, even if the neighborhood relation is
symmetrical, it is again highly likely that an agent i will
sometime observe an agent j without that j is observing i
at that particular moment, but that j will observe i later. In
all these situations, one could hope to take advantages of
the essential reciprocity of the system design even if this
reciprocity is not always instantaneously satisfied.

Contributions

We show in our main result (Theorem 1) that the conver-
gence of systems of the form (1) is still guaranteed if the
system satisfies some form of non-instantaneous reciprocity,
or reciprocity on average. More specifically, we assume
that the cut-balance condition (2) is satisfied on average
on a sequence of contiguous intervals. These intervals can
have arbitrary length, but the amount of interaction taking
place during each of them should be uniformly bounded.
Under these assumptions, we show that the system always
converges. Moreover, two agent values converge to the same
limit if they are connected by a path in the graph of
persistent interactions, defined by connecting two agents i, j
if
∫∞
t=0

aij(t)dt is infinite.
We also particularize our general result to systems sat-

isfying a form of pairwise reciprocity over bounded time
intervals. This particularized result is more conservative, but
often easier to check. We illustrate it on an application.

II. PROBLEM STATEMENT AND MAIN RESULT

We study the integral version of the consensus system (1):

xi(t) = xi(0) +

∫ t

0

n∑
j=1

aij(s)(xj(s)− xi(s))ds, (3)

where for all i, j ∈ N = {1, . . . , n}, the interaction weight
aij is a non-negative measurable function of time, summable
on bounded intervals of R+. There exists a unique function
of time x : R+ → Rn which satisfies for all t ∈ R+ the
integral equation (3), and it is locally absolutely continuous
(see Theorem 54 and Proposition C.3.8 in [24, pages 473-
482]). This function is actually the Caratheodory solution to
the differential equation (1) and can equivalently be defined
as absolutely continuous function satisfying (1) at almost all
times. We call it the trajectory of the system.

Following the discussion in section I, we introduce a new
condition that allows for non-instantaneous reciprocity of
interactions, i.e., we only require that the reciprocity occurs
on the integral weights

∫
aij(s)ds over some bounded time

intervals.

Assumption 1 (Integral weight reciprocity): There exists
a sequence (tp)p∈N of increasing times with limp→+∞ tp =
+∞ and some uniform bound K ≥ 1 such that, for all non-



empty proper subsets S of N , and for all p ∈ N, there holds∑
i∈S,j /∈S

∫ tp+1

tp

aij(t)dt ≤ K
∑

i∈S,j /∈S

∫ tp+1

tp

aji(t)dt. (4)

Assumption 1 generalizes most types of reciprocity found
in the consensus literature. In particular, it generalizes the
cut-balance assumption (2) developed in [13] and discussed
in the Introduction.

We will see in a simple example in section III-B that
Assumption 1 alone is not sufficient to guarantee the con-
vergence of the system. We need to further assume that
the integral of the interactions taking place in each interval
[tp, tp+1] is uniformly bounded.

Assumption 2 (Uniform upper bound on integral weights):
The sequence (tp) used in Assumption 1 is such that∫ tp+1

tp

aij(t)dt ≤M,

holds for all i, j ∈ N , p ∈ N and some constant M .

We now state our main result, whose proof is sketched in
Section V.

Theorem 1: Suppose that the interaction weights of sys-
tem (3) satisfy Assumptions 1 (integral reciprocity) and 2
(upper bound on weight integral). Then, every trajectory x
of system (3) converges.

Moreover, let G = (N , E) be the graph of persistent
weights defined by connecting (j, i) if

∫∞
0
aij(t)dt = +∞.

Then, there is a directed path from i to j in G if and only if
there is a directed path from j to i, and there holds in that
case limt→∞ xi(t) = limt→∞ xj(t).

The second part of the theorem implies that there is a local
consensus in each connected component 1 of the graph G of
persistent interactions.

Checking that an actual decentralized system satisfies
Assumptions 1 and 2 may sometimes be nontrivial, as these
assumptions involve global conditions on specific time peri-
ods. When the interactions between agents are decentralized
and depend on local parameters, the period over which
the interactions between one pair of agents can be deemed
reciprocal does not necessarily correspond the period over
which the interactions between another pair of agents is
reciprocal. One may then find it uneasy to select appropriate
times tp guaranteeing the reciprocity conditions for all pairs
of agents simultaneously on the same intervals [tp, tp+1].

We therefore introduce a new local assumption that we
will show to be more conservative than Assumptions 1 and
2 when interactions are bounded. It requires that whenever
an agent j influences an agent i at some time t, both agents
should influence each other with a sufficient strength across
a certain time interval around t.

1A connected component is a subgraph in which any two nodes are
connected to each other by at least a path, and which is connected to no
other nodes in the graph.
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Fig. 1. Representations of the interactions taking place in example 1 (a)
and in example 2 (b) in Section III-A, and of the connected components of
the graph of persistent interactions, in which local consensuses occur.

Assumption 3 (Pairwise reciprocity): There exist constant
ε, T > 0 such that for every i, j ∈ N and t, if If aij(t) > 0,
then there exists tij , tij such that
a) tij − tij ≤ T ,
b) t ∈ [tij , tij ],

c)
∫ tij
tij

aij(t)dt ≥ ε and
∫ tij
tij

aji(t)dt ≥ ε.

Theorem 2: Suppose that the interaction weights aij(t) of
system (3) satisfy Assumption 3 and are uniformly bounded
by some constant M ′. Then they satisfy Assumptions 1 and
2, and the conclusions of Theorem 1 hold.

Remark 1: Theorem 1 and Theorem 2 are stated for
systems where the coefficients aij(t) only depend on time,
and the proof of Theorem 1 actually uses that fact. However,
these results can directly be extended to solutions of systems
with state-dependent coefficients ãij(t, x). Indeed, suppose
that x is a solution of

xi(t) = x(0) +

∫ t

0

ãij(s, x(s))(xj(s)− xi(s))ds, (5)

then x is also a solution the linear time-varying systems
(3) with ad hoc coefficients aij(t) = ãij(t, x(t)), to which
Theorem 1 applies. Similar extensions apply to randomized
weights aij . Note however that the existence or uniqueness of
a solution to nonlinear systems of the form (5) is in general
a complex issue.

Finally, one can easily verify that Theorem 1 and Theorem
2 can be extended when the agent values xi are in Rn
provided that the weights aij remain scalar. It suffices indeed
in that case to apply the result to each component of the xi.

III. EXAMPLES

A. System with non-instantaneous reciprocity

In this Section, we present two simple 4-agents systems
whose convergence can be established by Theorem 1 and by
no other result on consensus available in the literature.



Example 1:

Our first example is depicted in Fig. 1(a). It contains two
weakly interacting subsystems, inside each of which two
agents succesively attract each other. More specifically, the
interactions start at time t = 2 and are defined as follows:
For every p ≥ 1,
• if t ∈ [2p, 2p+ 2], a12 = a21 = a34 = a43 = 1/p2,
• if t ∈ [2p, 2p+ 1], a32 = a41 = 1/p,
• if t ∈ [2p+ 1, 2p+ 2], a23 = a14 = 1/p,

and all values of aij(t) that are not epxlicitly defined
are equal to 0. One can verify that this system satisfies
Assumptions 1 and 2 with tp = 2p, K = 1 and M = 2.
We can thus apply Theorem 1 to establish its convergence.
The graph of persistent interactions can also easily be built
and contains the edges (2, 3), (3, 2), (1, 4) and (4, 1). There
are thus two connected components {2, 3} and {1, 4}, and
two local consensuses x∗2 = x∗3 and x∗1 = x∗4.

On the other hand, notice that the system does not satisfy
any instantaneous reciprocity condition, so none of available
reciprocity-based results applies. Moreau’s result does not
apply either due to the weak interactions in 1/p2 between
the subsystems (the interactions are not lower bounded ; see
section 3.3 in [18] for a detailed explanation). Observe also
that our result also applies if the interactions are interrupted
during arbitrarily long periods. Suppose indeed that the
interactions defined above do not take place during the
intervals [2p, 2p + 1] and [2p + 1, 2p + 2] but during the
intervals [p2, p2 + 1] and [p2 + p, p2 + p+ 1]. Assumptions
1 and 2 still apply with tp = p2.

Example 2:

The second example involves a chain of four agents, which
are attracted by their higher index neighbor for t ∈ [2p, 2p+
1] and their lower index neighbor for t ∈ [2p+ 1, 2p+ 2], as
depicted in Figure 1(b). Moreover, the ratios between weights
of the different interactions grow unbounded.

Specifically, the interactions start again at t = 2, and for
each p ≥ 1,
• if t ∈ [2p, 2p+ 1], a12 = 1/p2, a23 = 1/p and a34 = 1
• if t ∈ [2p + 1, 2p + 2], a21 = 1/p2, a32 = 1/p and
a43 = 1

and all values of aij(t) that are not explicitly defined are
equal to 0. One can verify again that Assumptions 1 and 2
with tp = 2p, K = 1 and M = 2, so that the convergence of
the system follows from Theorem 1. The graph of persistent
interactions contains the edges (2, 3), (3, 2), (3, 4) and (4, 3),
resulting in a local (trivial) consensus of agent 1, and a
consensus between agent 2, 3 and 4.

Again, the system satisfies no instantaneous reciprocity
condition, so none of available reciprocity-based results
applies. Moreover, all the results of which we are aware and
that do not rely on reciprocity require the interaction to be
bounded from above and from below (see [19] for example).
Since the ratios between the values of a34, a43 and a32, a23

grow unbounded, it would thus be impossible to apply them
even to the connected component {2, 3, 4}, including if we
re-scale the values of the coefficients by scaling time.

Besides, Theorem 1 would again apply exactly in the same
way if the interactions were interrupted during arbitrary long
periods of time

B. Oscillatory behavior under integral reciprocity - Neces-
sity of Assumption 2.

The following Proposition formalizes the fact that As-
sumption 1 alone is not sufficient to guarantee convergence.

Proposition 3: There exist systems of the form (3) sat-
isfying Assumption 1 (integral reciprocity) and that admit
trajectories that do not converge.

To prove the Proposition, we present a 3-agent system which
satisfies Assumption 1 (reciprocity) but whose trajectory
does not converge. The idea is to have one agent (2)
oscillating between two agents (1 and 3) that succesively
attract the former while remaining at a certain distance from
each other, as depicted in Fig. 2. Agent 1 starts influencing
2. Since we only impose integral reciprocity, a12 and a21 do
not have to be non-zero simultaneously. Also, because there
is no uniform bound on influence, the distance between 2
and 1 has become arbitrarily close to 0 when agent 2 starts
influencing back. So the overall influence of agent 2 over 1,
this is

∫
a12 · (x2 − x1), is also arbitrarily small. This leads

to an actual influence of 1 over 2 but not of 2 over 1. The
same happens between 3 and 1, leading to convergence of 1
and 3 to distinct limits and oscillations of 2. We now present
the formal proof.

Proof: Let (ρp)p∈N be a non-decreasing sequence such
that ρp ≥ 1, for all p ∈ N. Let us consider a multi-agent
system with 3 agents where x1(0) = 0, x2(0) = 1/2 and
x3(0) = 1 and with the dynamics given by system (3) with
weights

if t ∈ [4p, 4p+ 1), a21(t) = ρp,
if t ∈ [4p+ 1, 4p+ 2), a12(t) = ρp,
if t ∈ [4p+ 2, 4p+ 3), a23(t) = ρp,
if t ∈ [4p+ 3, 4p+ 4), a32(t) = ρp,

where only the non-zero weights have been detailed. Figure 2
illustrates the dynamics of this system.

Here, Assumption 1 holds with K = 1 for tp = 4p. It
is easy to see that x1(t) is non-decreasing, x3(t) is non-
increasing and for all t ≥ 0, x1(t) ≤ x2(t) ≤ x3(t).
Integrating the dynamics of the system, we can show that
for all p ∈ N:

x1(4p+ 4) = x1(4p+ 2) ≤ x2(4p+ 2) = x2(4p+ 1)
= (1− e−ρp)x1(4p) + e−ρpx2(4p)
≤ (1− e−ρp)x1(4p) + e−ρpx3(0),

and that
x3(4p+ 4) ≥ x2(4p+ 4) = x2(4p+ 3)

= e−ρpx2(4p+ 2) + (1− e−ρp)x3(4p+ 2)
≥ e−ρpx1(4p) + (1− e−ρp)x3(4p)
≥ e−ρpx1(0) + (1− e−ρp)x3(4p).
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Fig. 2. Dynamics of the 3-agent system.

Combining the two previous results and initial conditions
gives us

1+(x3(4p+4)−x1(4p+4)) ≥ (1−e−ρp) (1 + (x3(4p)− x1(4p)) .

We observe that term 1 + (x3(4p) − x1(4p) decreases
more slowly than a geometric sequence of scale factor
(1 − e−ρp). Taking a sequence ρp growing sufficiently fast
(and thus breaking the uniform bound Assumption 2) leads
to convergence of this term arbitrarily close its initial value
2. Then, (x3(4p)) and (x1(4p)) do not converge to the same
value. As a consequence, one can verify that x2 will keep
oscillating between x1 and x3. Hence, the system does not
converge.

IV. APPLICATION TO MOBILE ROBOTS WITH
INTERMITTENT ULTRASONIC COMMUNICATION

In this section we apply our results to a realistic system of
mobile robots evolving in the plane R2 and communicating
using ultrasonic sensors. These sensors make for an afford-
able and thus widespread contactless mean of measuring
distances [4], but are subject to certain limitation as detailed
below. The objective of the group of robots is to achieve
practical rendezvous, i.e. all robots should eventually lie in
a ball of a certain maximal radius (see e.g. [6]). The robots
have several functional constraints. The ultrasonic sensors
in use are not accurate when measuring distances smaller
than a radius d0 > 0, thus we assume that the robots cannot
make use of such measures and are blind at short range.
Also, the robots’ engines are limited and the velocity of each
robots cannot exceed a maximum of µ > 0 in norm. Most
importantly, in order to save energy, the robots activate their
sensors intermittently, and in an asynchronous way: Robot
i wakes up at every time tik, and monitors its environment
over the time-interval [tik, t

i
k+δmin], for some δmin > 0. (For

simplicity, we take the same δmin for every robot, but this
is not crucial for our result). In addition, we assume that the
sequence (tik) satisfies tik+1 − tik ∈ [δmin, δmax] for every
k ∈ N, for some δmax > δmin, and ti0 ≤ δmax.

We will provide a simple control law for the robots ensur-
ing some form of non-instantaneous reciprocity. Our result in
Section II will then allow us to establish (i) the convergence
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Fig. 3. Representations of the interactions taking place in the group
of mobile robots with intermittent ultrasonic communication presented in
Section IV. Events 1, 2 and 3 occur successively and so do events 4, 5
and 6. Event 4 occurs after event 1 and the following condition holds :
tjh ∈ [tik, t

i
k + δmax]. When 2 occurs, aij(t) > 0 and when 4 occurs

aji(t) > 0. Proposition 4 provides conditions which guarantee that event
4 always takes place when event 2 has occurred, this ensures interaction
reciprocity.

of all robot positions, and (ii) asymptotic practical consensus,
that is, all robots eventually lie at a distance from each
other smaller than a certain threshold. This threshold is
proportional to d0, the distance below which robots cannot
sense each other. Since it converges, the system will not
suffer from infinite oscillatory behaviors as in the example
presented in Section III-B. To the best of our knowledge,
such results cannot be obtained with any other convergence
result available in the literature.

Our control law can be expressed as the following satu-
rated consensus equation:

ẋi(t) = sat
∑
j∈N

bij(t)(xj(t)− xi(t)), (6)

where the bij(t) will be specified later, and the function sat :
Rn → Rn is defined by

sat(x) =

{
µ · x
‖x‖ if ‖x‖ ≥ µ

x otherwise.

The saturation guarantees that the velocity of each robot
remains below its limit. We now explicit how the interaction
weights bij are set. The idea is represented in Fig. 3: Agent
i sets bij(t) to 1 when it starts monitoring the environment
if its distance to j is larger than some appropriate radius
d1 > d0 (engage), or if its distance to j is larger than d0

and j has recently set bji(t) to 1 because it was at a distance
larger than d1 from i at that time (reciprocate). The latter
part of the algorithm is designed to ensure reciprocity, and
the presence of d1 is needed to ensure that that i and j remain
sufficiently distant for measurement to be made when i or j
need to reciprocate.

Formally, we set bij(t) = 0 by default, and set it to 1 in
two cases:



i engages

∃k ∈ N, t ∈ [tik, t
i
k + δmin], ‖xi(tik)− xj(tik)‖ ≥ d1 (7)

i reciprocates{
∃h ∈ N, t ∈ [tjh, t

j
h + δmin], ‖xi(t)− xj(t)‖ ≥ d0 and

∃k ∈ N, tik ∈ [tjh − δmax, t
j
h], ‖xi(tik)− xj(tik)‖ ≥ d1.

(8)
Remark 2: Condition (7) can be easily implemented. To

implement condition (8), i has to keep in memory the last
activation time tjh at which the distance between i and j
was higher than d1. This could for example be achieved by
having j sending a message to i at tjh.

Under these communication rules, we have the expected
result :

Proposition 4: Consider system (6) where interaction oc-
curs according to conditions (7) and (8). Also assume there
holds

4δmax · µ ≤ d1 − d0. (9)

Then, the group of robots asymptotically achieves practical
rendezvous: x∗i = limt→∞ xi(t) exists for every i ∈ N , and

lim
t→∞

∆(t) ≤ d1,

where ∆(t) = maxi,j∈N ||xi(t)− xj(t)||.
Proof: Observe first that system (6) can be rewritten

under the form of system (3) with

aij(t) =
µ · bij(t)

‖
∑
k∈N

bik(t)(xk(t)− xi(t))‖
(10)

if ‖∑k∈N bik(t)(xk(t) − xi(t))‖ ≥ µ and aij(t) = bij(t)
otherwise. Since bik(t) = 0 whenever ‖xk(t)−xi(t)‖ < d0,
aij is upper bounded and thus is a non-negative measurable
function, summable on bounded intervals of R+.

Moreover, since ∆(t) = maxi,j∈N ||xi(t) − xj(t)|| is
clearly nonincreasing, it follows from the definition of aij(t)
that

aij(t) ≥ bij(t) min

(
µ

n∆(0)
, 1

)
, (11)

where ∆(0) is the initial group diameter.
In order to apply Theorem 2, we now show that the system

under intermittent ultrasonic communication described above
satisfies Assumption 3 with

ε = min

(
δminµ

n∆(0)
, δmin

)
and T = 2δmax.

Let t ≥ 0 such that aij(t) > 0. Then, bij(t) > 0 and at
least one among conditions (7) and (8) is satisfied. Suppose
first that condition (7) is satisfied and denote by k the integer
such that t ∈ [tik, t

i
k+δmin]. Clearly, condition (7) also holds

for every s ∈ [tik, t
i
k + δmin].

We set tij = tik and tij = tik+2δmax ≥ tik+δmin. Clearly,
there holds t ∈ [tij , tij ], and tij − tij ≤ 2δmax = T , so that

conditions (a) and (b) of Assumption 3 hold. Moreover, the
non-negativity of aij implies that∫ tij

tij

aij(s)ds ≥
∫ tik+δmin

tik

aij(s)ds

≥ min

(
µ

n∆(0)
, 1

)∫ tik+δmin

tik

bij(s)ds

= min

(
δminµ

n∆(0)
, δmin

)
= ε,

where we have used (11) and the fact that bij(s) = 1 for
all s ∈ [tik, t

i
k + δmin] since we have seen that condition

(7) holds for those values. There remains to prove that∫ tij
tij

aji(s)ds ≥ ε.
Since tjh+1 − t

j
h ≤ δmax for all h ∈ N and ti0 ≤ δmax,

there exists h ∈ N such that tjh ∈ [tik, t
i
k + δmax], and thus

[tjh, t
j
h + δmax] ⊆ [tik, t

i
k + 2δmax] = [tij , tij ]. We show

that the reciprocate condition (8) is satisfied for every s ∈
[tjh, t

j
h + δmax]. The second part of the condition directly

follows from tjh ∈ [tik, t
i
k + δmax]. For the first one, observe

that ||ẋi|| ≤ µ (and the same holds for j), and that ||xi(tk)−
xj(tk)|| ≥ d1 by assumption. Therefore, for any time s ∈
[tjh, t

j
h + δmax] ⊆ [tik, t

i
k + 2δmax], we have

||xi(s)− xj(s)|| ≥ ||xi(tk)− xj(tk)|| − 4µδmax

≥ d1 − (d1 − d0) = d0

for every s ∈ [tjh, t
j
h + δmax], where we have used (9). As

a consequence, the first part of condition (8) also holds,
implying that bij(s) = 1 for every s ∈ [tjh, t

j
h + δmax]. We

get again∫ tij

tij

aji(s)ds ≥ min

(
µ

n∆(0)
, 1

)∫ tjh+δmin

tjhi

bij(s)ds = ε,

which achieves to show that Assumption 3 holds in that case.

Suppose now that aij(t) > 0 because Condition (8)
is satisfied at t for i, j. Then one can easily verify that
condition 7 was satisfied for j, i for all s ∈ [tkj , t

k
j + δmin]

for some tkj ∈ [t − δmax, t], and an argument symmetric
to that we have developed above shows that Assumption 3
also holds.

Since the weights aij(t) are upper-bounded, applying
Theorem 2 (or more precisely its direct extension to R2,
see Remark 1) shows that (i) the system converges: x∗i =
limt→∞ xi(t) exists for every i, and (ii) x∗i 6= x∗j only if∫∞

0
aij(t)dt <∞.

To conclude the proof, suppose, to obtain a contradiction,
that limt→∞∆(t) > d1, and thus that ||x∗i − x∗j || > d1 for
some i, j. The continuity of x implies that ||xi(t)−xj(t)|| >
d1 for all t > s for some s, and in particular for all tik > s. It
follows then from the engage rule (7) that bij(t) would be set
to 1 on infinitely many time intervals of length at least δmin.
Besides, it follows from (11) that aij and bij remain within
a bounded ratio, so that we would have

∫∞
0
aij(t)dt = ∞.



However, we have seen that x∗i 6= x∗j only if
∫∞

0
aij(t)dt <

∞, so there should hold x∗i = x∗j , in contradiction with our
hypothesis. We have thus limt→∞∆(t) ≤ d1.

Note that it is actually possible to have the robots con-
verging to final positions within distances smaller than the
d1 from Proposition 4 from each other. This can be achieved
by decreasing their maximal speed µ and the distance d1

when approaching convergence. Such more evolved control
laws are however out of the scope of this section, where our
goal was to demonstrate the use of our results from Section
II.

V. PROOFS

Before we prove Theorem 1, we provide several intermedi-
ate results. Our proof uses the following result on cut-balance
discrete-time consensus systems.

Theorem 5: Let y : N→ Rn be a solution to

yi(p+ 1) =
n∑
j=1

bij(p)yj(p), (12)

where bij(p) ≥ 0 and
∑n
j=1 bij(p) = 1. Suppose that the

following assumptions hold:

a) Lower bound on diagonal coefficients: There exists a
β > 0 such that bii(p) ≥ β for all i, p.

b) Cut balance: There exists a K ′ > 0 such that for every
p and non-empty proper subset S of N , there holds∑

i∈S,j 6∈S

bij(p) ≤ K ′
∑

i∈S,j 6∈S

bji(p). (13)

Then, y∗i = limp→∞ yi(p) exists for every i. Moreover,
let G′(N , E) be a directed graph where (j, i) ∈ E whenever∑∞
p=0 bij(p) = +∞. There is a path from i to j in G if and

only if there is a path from j to i, and in that case there
holds y∗i = y∗j .

Theorem 5 is related to Theorem 1 in [25] for stochastic
systems, and extends a part of Theorem 2 in [12], which
also requires the existence of a uniform lower bound on the
positive coefficients bij , that is, the existence of a β′ such that
bij(p) > 0⇒ bij(p) ≥ β′ . While this condition may appear
minor, its absence is actually essential for our purpose, as
it is in general not satisfied in the context of our proof. We
provide in Section V-A a proof of Theorem 5 based on an
idea used in [26]. We then complete the proof of Theorem
1 in Section V-B.

A. Proof of Theorem 5

It follows directly from Lemma 1 in [13] that every weakly
connected component of G′ defined in Theorem 5 is strongly
connected, that is, that there is a path from i to j if and only
if there is a path from j to i.

We let B(p) be the (stochastic) matrix containing all
coefficients bij(p), that is, [B(p)]ij = bij(p). For q ≥ p,
we also let B[q : p] = B(q)B(q − 1) . . . B(p + 1)B(p).

Observe that (12) can be rewritten as y(p+ 1) = B(p)y(p)
or y(p) = B[p : 0]y(0). We now call CG′ the set of matrices
B ∈ Rn×n such that [B]ik = [B]jk for every k if (j, i) ∈ E′,
where E′ is the set of edges of the graph G′(N , E′) defined
in the statement of Theorem 5. Observe that CG′ is a linear
subspace of Rn×n. Moreover, since y(p) = B[p : 0]y(0), the
conclusion of Theorem 5 is equivalent to the convergence of
B[p : 0] to a stochastic matrix B∗ ∈ CG′ .

For given K ′ > 0 and β′ > 0, we now let P be the set of
admissible matrices B, that this, the set of matrices B such
that
• B is stochastic: B1 = 1 and [B]ij ≥ 0,
• [B]ii ≥ β for every i,
• cut-balance:

∑
i∈S,j 6∈S [B]ij ≤ K ′

∑
i∈S,j 6∈S [B]ji for

every subset S of N = {1, . . . , n}.
The set P is a (finite) polytope with a finite number nP
of vertices V (1), V (2), . . . , V (nP ). We are going to represent
our matrices B(p) as the expected value of random variables
taking their values in the set of these vertices. Indeed, it

follows from its definition that every matrix B(p) belongs
to P , and can thus be expressed as a convex combination of
its vertices

B(t) =

nP∑
ξ=1

λξ(p)V (ξ),

with
∑nP
ξ=1 λ

ξ(p) = 1 and λξ(p) ≥ 0. This decomposition
is in general not unique, but we fix an arbitrary one. We
then define for every p the (independent) random variables
R(p) ∈ Rn×n taking their values in the set of vertices of
P , with R(p) = V (ξ) with probability λ(p)(ξ). It follows
directly that E(R(p)) = B(p). Moreover, since the R(p) are
independent, there holds

E(R[p : 0]) = E(R(p)R(p− 1) . . . R(0))

= E(R(p))E(R(p− 1)) . . .E(R(0))

= B(p)B(p− 1) . . . B(0) = B[p : 0].

To analyze the convergence of B[p : 0], we analyze thus the
convergence of the R[p : 0].

Le us fix a realization of the random sequence of matrices
R(p) and consider the corresponding product R[p : 0].
For every time q, R(q) belongs by definition to P and
satisfies thus condition (a) and (b) of the Theorem. Moreover,
since the R(q) is always a vertex of P , it can take only
finitely many values. One can thus find a β′ > 0 such
that [R(q)]ij(q) > 0 ⇒ [R(q)]ij(q) ≥ β′ (it suffices to
take the smallest nonzero entry over all V (ξ)). We can
therefore apply Theorem 2 in [12], which implies that R∗ =
limp→∞R[p : 0] exists, and that if

∑∞
p=0[R(p)]ij =∞, then

[R∗]ik = [R∗]jk for every k.

We now analyze the condition
∑∞
p=0[R(p)]ij =∞. Since

[R(p)]ij ≤ 1, we have E([R(p)]ij) ≤ P([R(p)]ij > 0). Thus,
since the R(p) are independent, it follows from the second
Borel-Cantelli Lemma that if

∑∞
p=0 E([R(p)]ij) = ∞ then

[R(p)]ij > 0 occurs infinitely often with probability 1.



Since nonzero entry in [R(p)]ij are lower bounded by β′,
we have that

∑∞
p=0[R(p)]ij = ∞ with probability 1 if∑∞

p=0 E([R(p)]ij) = ∞ that is if
∑∞
p=0[B(p)]ij = ∞,

and thus if (j, i) ∈ E′. As a consequence R∗ ∈ CG′ with
probability 1.

The conclusion of Theorem 5 follows then from the
application of the following Proposition to the sequence of
random variables R[p : 0] = R(p)R(p−1) . . . R(0), the set S
of stochastic matrices, and the linear subspace CG′ . Indeed,
since R[p : 0] always converges, and its limit belongs to CG′

with probability 1, it implies that B[p : 0] = E(R[p : 0])
converges to some matrix B∗ in CG′ . Moreover, since every
B[p, 0] is stochastic and the set of stochastic matrices is
compact, B∗ is also stochastic.

Proposition 6: Let {Zp : p ∈ N} be a (discrete-time)
stochastic process, where Zp takes its value in a bounded
subset S ⊂ Rn for every p.

(a) If limp→∞ zp exists for every realization of Z, then
limt→∞ E(zp) exists.

(b) Let W be a linear subspace of Rn. If limt→∞ zp exists
and belongs to W almost surely, then limp→∞ E(zp)
exists and belongs to W .

We remark that the assumptions of Proposition 6 do not
require (almost) all realizations of Z to converge to a same
value, but only that (almost) every realization of Z converges.

Proof: To prove (a), observe that our stochastic process
defines a measure space (Ω, A, µ), where Ω is the sample
space (set of all possible realizations of Z), A the functions
defined on Ω and µ the measure defined by the probabilities.
The random variables Zp form a sequence of real-valued
functions on Ω.

Since limp→∞ zp exists for every realization, this sequence
of functions is pointwise convergent, and we call Z∗ its
limit. Moreover, the sequence of functions Zp is uniformly
bounded because they all take their values in the bounded set
S. We can therefore apply the bounded convergence theorem,
which yields

lim
p→∞

E(Zp) = lim
p→∞

∫
Ω

Zpdµ =

∫
Ω

Z∗dµ,

and thus the existence of limp→∞ E(Zp).
Let us now prove (b). Since limp→∞ zp ∈ W almost

surely, the distance d(zp,W ) between zp and W converges to
zero almost surely. Convergence with a probability 1 implies
convergence in distribution (see for example Theorem 25.2
in [1], and therefore the convergence of the expected values,
so that limt→∞ E(d(zp,W )) = 0. Since W is a linear
and hence convex set, d(.,W ) is a convex function. It
follows then from Jensen’s inequality that d(E(zp),W ) ≤
E(d(zp,W )), and thus that d(E(zp),W ) also converges to
0. The limit limp→∞ E(zp) must thus be a distance 0 from
W , that is in W .

B. Proof of Theorem 1

To apply Theorem 5, we focus on the values taken by the
states at times tp. Remember that the sequence of times tp

defines the intervals over which the integral reciprocity is
satisfied.

Lemma 7: The sequence of states (x(tp)) can be written
as the trajectory of the discrete-time consensus system ob-
tained by sampling (3)

xi(tp+1) =
∑
j∈N

φij(p) · xj(tp), (14)

where the weights φij(p) are non-negative and satisfy∑
j∈N φij(p) = 1. This sampled system always exists and is

unique for given weights aij(t) and sampling times tp, and
the weights φij(p) are independent of states x(t).

In particular, if xj(tp) = 1 for j ∈ S and xk(tp) = 0 for
k /∈ S, for some S ⊆ N , there holds∑

j∈S
φij(p) = xi(tp+1). (15)

Remark 3: The equality ((15)) provides a way of com-
puting or bounding certain sums of the weights φij(p)
by considering the evolution of the systems starting from
’artificial’ states, where xj(tp) = 1 for some agents and
xk(tp) = 0 for the others.

Note that these artificial states are only a formal tool to
compute weights φij(p), and their use does not result in any
loss of generality.

Proof: Denote Φ(t, T ) the fundamental matrix of the
linear dynamics (3) which is uniquely defined [10] such that

x(T ) = Φ(t, T )x(t).

We define φij(p) as the ij-th coefficient of matrix
Φ(tp, tp+1). So, the φij(p) are unique and equation (14) is
satisfied. Moreover, for given weights aij(t), matrix Φ(t, T )
is independent of state x(t) and so are the weights φij(p).
So if we assume artificial states xj(tp) = 1 for j ∈ S and
xk(tp) = 0 for k /∈ S, we obtain (15) from equation (14).
Since system (3) preserves the nonnegativity of the states
It follows from equation (15) applied to S = {j} that
φij(p) ≥ 0 for every i, j, p.

Finally, we can use the Peano-Baker to show that∑
j∈N φij(p) = 1 : the formula gives Φ(t, T ) as the limit

of a recursive series

Φ(t, T ) = lim
n→∞

Mn(T )

with
M0(τ) = I and Mn+1(τ) = I −

∫ τ

t

L(s)Mn(s)ds,

where I is the identity matrix and L(s) the Laplacian matrix
of A(s) = (aij(s)), i.e. with diagonal elements equal to∑
j∈N aij(s) and off-diagonal elements equal to −aij(s).

Since L · 1 = 0 with 1 the vector of all ones, we have from
the recursive equation that Mn · 1 = 1 and by continuity,
Φ(t, T ) · 1 = 1, thus

∑
j∈N φij(p) = 1.

To otain more insights on the discrete-time weights φij ,
we give the next proposition which bounds the discrete-time
weights φij using the continuous-time weights aij .



Proposition 8: Under the uniform bound Assumption 2,
we have for all proper subset of agents S, for all p ≥ 0,

G·
j /∈S∑
i∈S

∫ tp+1

tp

aij(t)dt ≤
j /∈S∑
i∈S

φij(p) ≤ n·
j /∈S∑
i∈S

∫ tp+1

tp

aij(t)dt,

with G = exp(−2nM)/n.

Proof: Let p ∈ N and S a proper subset of N . We
assume that

∀i ∈ S, xi(tp) = 0 and ∀j ∈ S, xj(tp) = 1, (16)

as suggested in Remark 3.
We first show the left inequality. We show that starting

from state (16) at time tp no agent j /∈ S can be arbitrarily
close to 0 at time tp+1. We have for all τ ∈ [tp, tp+1],

xj(τ) = xj(tp) +

∫ τ

tp

∑
k∈N

ajk(t) · (xk(t)− xj(t))dt

≥ xj(tp)−
∫ τ

tp

∑
k∈N

ajk(t) · xj(t)dt,

where we used xk(t) ≥ 0, k ∈ N . We use Gronwall’s
inequality and Assumption 2 (upper bound on interactions
on each [tp, tp+1]) to obtain

j 6∈ S ⇒ xj(τ) ≥ e−nM ,∀τ ∈ [tp, tp+1] (17)

We rely on bound (17) to prove that, due to attraction from
agents not in S, all states xi(tp+1), for i ∈ S, cannot be
arbitrarily close to 0 at time tp+1.

Let now h ∈ S be such that∑
j /∈S

∫ tp+1

tp

ahj = max
i∈S

∑
j /∈S

∫ tp+1

tp

aij ,

i.e. , agent h is the element in S receiving the highest
influence from the rest of the group. In particular, there holds∑

j /∈S

∫ tp+1

tp

ahj ≥
1

n

∑
i∈S

∑
j /∈S

∫ tp+1

tp

ahj (18)

Using that xi ≥ 0 for i ∈ S and the lower bound (17) on xj
for j /∈ S, we have for all τ ∈ [tp, tp+1],

xh(τ) =

xh(tp) +
∫ τ
tp

∑
j /∈S

ahj(xj − xh) +

∫ τ

tp

∑
k∈N

ahk(xk − xh)

≥ xh(tp) +
∫ τ
tp

∑
j /∈S

ahjxj −
∫ τ

tp

∑
k∈N

ahkxh.

≥ e−nM
∫ τ
tp

∑
j /∈S

ahj −
∫ τ

tp

∑
k∈N

ahkxh,

where we have also used xh(tp) = 0. It follows then from
Gonwall’s inequality.

xh(tp+1) ≥ e−nM
∫ tp+1

tp

e−
∫ tp+1
τ

∑
k∈N ahk

∑
j /∈S

ahj . (19)

We now bound the term in the exponential using Assump-
tion 2 (upper bound) together with (18) to write

xh(tp+1) ≥ 1

n
e−2nM

∑
i∈S,j /∈S

∫ tp+1

tp

aij . (20)

Moreover, φij(p) ≥ 0 and equation (15) yield∑
i∈S

∑
j /∈S

φij(p) ≥
∑
j /∈S

φhj(p) = xh(tp+1).

We conclude the first part of the proof combining the two
previous equations. We now turn to the second inequality.

Denote, for t ∈ [tp, tp+1],

x̄S(t) = max
i∈S

xi(t) = x̄S(tp) +

∫ t

tp

∑
k∈N

am(τ)k(xk − x̄S)dτ,

where m(τ) ∈ S is chosen such that xm(τ)(τ) = x̄S(τ). The
last equality has been shown in [12, Proposition 2]. Notice
that the choice of state (16) implies x̄S(tp) = 0. Since xj ≤ 1
for j /∈ S and xi ≤ x̄S ≤ 1 for i ∈ S,

x̄S(t) ≤
∫ t

tp

∑
j /∈S

am(τ)j(1− x̄S)dτ

≤
∫ t

tp

∑
i∈S,j /∈S

aij(1− x̄S).

The Gronwall’s inequality yields

x̄S(tp+1) ≤ 1− e−
∫ tp+1
tp

∑
i∈S,j /∈S aij ≤

∫ tp+1

tp

∑
i∈S,j /∈S

aij .

(21)
We conclude with∑

i∈S,j /∈S

φij(p) =
∑
i∈S

xi(tp+1) ≤ nx̄S(tp+1).

The previous proposition serves to transpose the cut-
balance assumption provided in Theorem 1 to the discrete-
time weights φij(p). In particular, we can now show that
the condition of Theorem 5 are satisfied, more precisely, we
have Lemma 9 regarding weights φij(p).

Lemma 9: The following properties hold :
a) There exists a lower bound β > 0 on diagonal elements:

φii(p) ≥ β, for all p and i.
b) The weights φij(p) satisfy the cut balance assumption

(13) for some K ′ determined by the constants K and
M of Assumptions 1 and 2.

Note that (b) would in general not be true for certain
stronger forms or reciprocity. In particular,

∫ tp+1

tp
aij(t)dt ≤

K
∫ tp+1

tp
aij(t)dt does not imply the existence of a K ′ such

that φij(p) ≤ K ′φji(p).

Proof: The proof of (a) is as follows. For arbitrary
k ∈ N and p, we suppose that xk(tp) = 0, and xi(tp) = 1
for every i 6= k. A reasoning similar to that leading to (17) in



the proof of Proposition 8 shows that xk(tp+1) ≤ 1−e−nM .
It follows then from Lemma 7 applied to S = {k} that∑
j∈N ,j 6=k φkj(p) ≤ 1 − e−nM , and thus that φkk(p) ≥

e−nM , which establishes (a).
We now prove statement (b). Proposition 8 applied to S

states that

j /∈S∑
i∈S

φij(p) ≤ n ·
j /∈S∑
i∈S

∫ tp+1

tp

aij(t)dt. (22)

On the other hand, applying the second inequality of the
same proposition, applied to N \ S yields

G ·
j∈S∑
i 6∈S

∫ tp+1

tp

aij(t)dt ≤
j∈S∑
i 6∈S

φij(p),

which can be rewritten as

G ·
j 6∈S∑
i∈S

∫ tp+1

tp

aji(t)dt ≤
j /∈S∑
i∈S

φji(p). (23)

Statement (b) with K ′ = n/G follows then directly from
Assumption 1 and the inequalities (22) and (23).

Proof: [of Theorem 1]
Since Lemma 9 is satisfied, Theorem 5 applies. Thus,

the sequence x(tp) converges to some x∗ ∈ Rn. Denote
G′ = (N , E) the directed graph where (j, i) ∈ E whenever∑∞
p=0 ϕij(p) = +∞. Theorem 5 also implies that x∗i = x∗j

if i and j belong to the same connected components of the
graph G′. This graph only has strong components which
are fully disconnected to each other and in which consensus
takes place for the discrete-time system y(p) = x(tp). The
graph G of persistent interactions defined in the statement
of Theorem 1 is in general different from G′. However, as
a direct corollary of Proposition 8, we have that G and G′

have the same connected components.
It remains to show that the continuous-time function x(t)

converges to the same x∗ as sequence (x(tp)). We prove
this by showing that for each S ⊆ N strongly connected
component of G (or of G′), both the minimum

¯
xS(t) =

mini∈S xi(t) and the maximum x̄S(t) = maxi∈S xi(t) con-
verge to the same value. Since S is a connected component
of G, the integral influence

∑
i∈S,j /∈S

∫∞
0
aij is finite. For

any µ < 0, there exists some Tµ ≥ 0 such that

∑
i∈S,j /∈S

∫ ∞
Tµ

aij < µ.

For all v > u ≥ Tµ, we have, using notation m(τ) ∈ S

chosen such that xm(τ)(τ) = x̄S(τ) as before,

x̄S(v)− x̄S(u) ≤
∑
j /∈S

∫ v

u

am(τ)j(xj(τ)− xm(τ)(τ))dτ

≤
∑
j /∈S

∫ v

u

am(τ)j |xj(τ)− xm(τ)(τ)|dτ

≤
∑

i∈S,j /∈S

∫ v

u

am(τ)j |xj(τ)− xi(τ)|dτ

≤
∑

i∈S,j /∈S

∫ ∞
Tµ

aij |xj − xi|

≤ µ∆(0),

where ∆(0) = maxi∈N xi(0) − mini∈N xi(0). This shows
that x̄S converges in the sense of Cauchy, thus it converges.
Since sub-sequence (x̄S(tp)) converges to x∗i for some
i ∈ S, it must be that limt→+∞ x̄S(t) = x∗i . We can
apply the same reasoning to show that

¯
xS also converges

limp→+∞
¯
xS(tp) = x∗i . We conclude that for all i ∈ S,

xi(t) converge to the same limit x∗i .

VI. PROOF OF THEOREM 2
For concision, we say that an unordered pair {i, j} =

{j, i} is active over an interval I if
∫
t∈I aij(t)dt ≥ ε and∫

t∈I aji(t)dt ≥ ε. The following Lemma compiles some
properties following from that definition.

Lemma 10:
a) Consider two intervals I, J with I ⊆ J . If {i, j} is active
over I , it is active over J .
b) Consider two intervals I, J with I ⊆ J . If {i, j} is not
active over J , it is not active over I .
c) Under Assumption 3, if aij(t) > 0, then {i, j} is active
over [t− T, t+ T ].
d) Under Assumption 3, if {i, j} is not active over [t, t′],
then aij(s) = aji(s) = 0 for all s ∈ [t+ T, t′ − T ].

The next Proposition is the core of our proof, it allows
building a sequence of times tk valid for Assumptions 1 and
2.

Proposition 11: Suppose that Assumption 3 is satisfied,
and let M = M1 + M2 where M1,M2 are any constant
satisfying

M2 > n(n− 1)T + T and M1 ≥M2 + T. (24)

Then, there exists a sequence t0, t1, . . . with t0 = 0, and
tk+1 − tk ≤M , such that the following condition Ak holds
for every k.

Ak : ∀i, j ∈ N distinct, A1k or A2k,

with [
A1k : ∀t ∈ [tk, tk+1], aij(t) = 0,
A2k : {i, j} is active over [tk, tk+1].

The proof of Proposition 11 is based on an induction that
makes use of the intermediate condition Bk :

Bk : ∀i, j ∈ N distinct, B1k or B2k,



with [
B1k : ∀t ∈ [tk, tk + T ], aij(t) = 0,
B2k : {i, j}is active over [tk, tk +M1].

The next Lemma concerns the initialization of the induc-
tion.

Lemma 12: Suppose that aij(t) = 0 for all t ≤ 0, and let
t0 = 0. Then Condition B0 holds.

Proof: Suppose that B10 does not hold, i.e. aij(t) > 0
for some t ∈ [0, T ]. Then, Lemma 10(c) gives that {i, j} is
active over [t − T, t + T ] and thus from Lemma 10(a) that
{i, j} is active over [min(0, t− T ), 2T ]. Since aij(t′) = 0
for all t′ < 0, it follows then that {i, j} is active over [0, 2T ]
and since according to equation (24), M1 ≥ M2 + T >
n(n − 1) + 2T ≥ 2T , {i, j} is active over [0,M1] (again
thanks to Lemma 10(a)). Thus B20 holds and so does B0.

Proposition 13 (Inductive case): If there exists tk such
that condition Bk holds, then there exists tk+1 ≤ tk +M1 +
M2 for which conditions Ak and Bk+1 hold.

Proof:
Let us introduce the two following sets of unordered pairs

of agents for every t ∈ [tk, tk +M1 +M2].
• Rt ⊆ {{i, j}|i, j ∈ N , i 6= j}: set of pairs {i, j} which

are active over time interval [tk, t].
• Vt ⊆ {{i, j}|i, j ∈ N , i 6= j}: set of pairs {i, j} for

which aij(t′) = aji(t
′) = 0 for all t′ ∈ [t, tk+M1+M2]

(i.e. set of pairs where there is no interaction between
t and tk +M1 +M2).

Note that for all tk ≤ t ≤ s ≤ tk + M1 + M2, there holds
Rt ⊆ Rs and Vt ⊆ Vs, so that these sets are non-decreasing
with time. The non-decrease of Vs is trivial while that of Rs
follows directly from Lemma 10(a).

We now build a tk+1 using the Algorithm 1, which we
prove to always successfully terminate. We first prove that
Claims 1 and 2 hold, and then show how this implies the
statement of this Proposition.

Algorithm 1 Selection of tk+1

Require: tk satisfies Bk
Set t̄ = tk +M1

Switch over cases 0 to 3 :
Case 0: t̄ ≥ tk +M1 +M2 − T : STOP, FAILURE
Case 1: conditions Ak and Bk+1 are satisfied taking
tk+1 = t̄. STOP, SUCCESS.
Case 2: Condition Ak does not hold taking tk+1 = t̄.

Claim 1: There exists {i, j} 6∈ Rt̄ belonging to Rt̄+T .
Then set t̄ = t̄+ T and iterate.
Case 3: Condition Bk+1 does not hold taking tk+1 = t̄.

Claim 2: There exists {i, j} /∈ Vt̄ belonging to Vt̄+T .
Then set t̄ = t̄+ T and iterate.

Claim 1:
In Case 2 of Algorithm 1, condition Ak does not hold. There
exists thus {i, j} such that A1k does not hold, i.e. aij(t) > 0
for some t ∈ [tk, t̄], and A2k does not hold, i.e. {i, j} is not
active over [tk, t̄].

The fact that A2k does not hold implies by definition of
Rt̄ that {i, j} 6∈ Rt̄. Let us now show that t ∈ [t̄ − T, t̄].
The fact that A2k does not hold together with Lemma 10(d)
implies that aij(t′) = 0 for all t′ ∈ [tk + T, t̄ − T ]. So
either t ∈ [tk, tk + T ] or t ∈ [t̄ − T, t̄]. We show that the
first case is impossible: Since {i, j} is not active over [tk, t̄],
and t̄ ≥ tk + M1, Lemma 10(b) implies that {i, j} is not
active over [tk, tk +M1], and thus that, B2k does not hold.
However, we know by hypothesis that Bk holds. Thus, B1k
holds : t /∈ [tk, tk + T ], and as a consequence, t ∈ [t̄− T, t̄].

It follows then from Lemma 10(c) that {i, j} is active over
[t − T, t + T ] and from Lemma 10(a) that it is active over
[t̄−2T, t̄+T ]. Since t̄ ≥ tk +M1 > tk + 2T , the pair {i, j}
is active over [tk, t̄ + T ] : {i, j} ∈ Rt̄+T , which achieves
proving claim 1.

Claim 2:
Since condition Bk+1 does not hold, there is a pair {i, j}
that satisfies neither B1k+1 nor B2k+1, that is, one for which
aij(t) > 0 for some t ∈ [t̄, t̄ + T ], and for which {i, j} is
not active over [t̄, t̄+M1]. Since t̄ ≤ tk +M1 +M2−T for
otherwise we would have been in case 0, the t ∈ [t̄, t̄+T ] for
which aij(t) > 0 lies in [t̄, tk + M1 + M2], which implies
that {i, j} 6∈ Vt̄ by definition of Vt̄. We now show that it
belongs to Vt̄+T

By Lemma 10(d), since {i, j} is not active over [t̄, t̄+M1],
aij(t

′) = aji(t
′) = 0 for all t′ ∈ [t̄+ T, t̄+M1 − T ]. Also,

by definition, t̄ ≥ tk +M1 and M1 ≥M2 + T , so that

t̄+M1 − T ≥ tk +M1 +M1 − T ≥ tk +M1 +M2.

Thus, aij(t′) = aji(t
′) = 0 for all t′ ∈ [t̄+T, tk+M1 +M2]

and {i, j} ∈ Vt̄+T .

To complete the proof of Proposition 13, we show that
Algorithm 1 stops and that when it does, the choice tk+1 = t̄
satisfies conditions Ak and Bk+1. If case 2 or 3 applies, t̄
increases by T . Otherwise the algorithm stops. In case 2,
it follows from Claim 1 that the size of Rt̄ increases by at
least 1, and in case 3, it follows from Claim 2 that the size
of Vt̄ increases by at least 1. Since both Rt̄ and Vt̄ are sets
of unordered pairs of distinct nodes, their size cannot exceed
n(n−1)/2. Therefore, Cases 2 and 3 do not apply more than
n(n− 1)/2 times each. In particular, case 0 or 1 must apply
for some t̄ ≤ tk +M1 + n(n− 1)T (remembering that t̄ is
initially tk +M1), at which stage the algorithm stops. Now
since according to equation (24), M2 > n(n−1)T +T , case
0 or 1 apply for t̄ < tk +M1 +M2−T , so that case 1 must
apply first, and the algorithm produces thus a tk+1 satisfying
tk+1− tk ≤M1 +M2 for which Ak and Bk+1 are satisfied.

The proof of Proposition 11 is then a direct consequence
of Lemma 12 and Proposition 13.

Proof: [of Theorem 2] We show that the sequence
tk built in Proposition 11 is valid for Assumption 1 and
2. Observe first that since the aij(t) are assumed to be
uniformly bounded and since tk+1 − tk ≤ M , there clearly



holds
∫ tk+1

tk
aij(t)dt < M ′ for some M ′ and all i, j and

tk, so that Assumption 2 holds. Moreover, it follows from
Proposition 11 that either aij(t) = aji(t) = 0 for all
t ∈ [tk, tk+1], or

∫ tk+1

tk
aij(t)dt ≥ ε and

∫ tk+1

tk
aji(t)dt ≥ ε.

Since the latter integrals are also bounded by M ′, there holds∫ tk+1

tk

aij(t)dt ≤
M ′

ε

∫ tk+1

tk

aji(t)dt,

which implies that Assumption 1 also holds.

VII. CONCLUSION

In this paper, we have developed a convergence result
for continuous-time consensus systems. This result is based
on a new assumption which allows for non-instantaneous
reciprocity. Unlike previous studies, we only assume that
reciprocity takes place on average over contiguous time
intervals. This assumption is appropriate for various classes
of systems (including classes of broadcasting, gossiping, and
self-triggered system where communication is not necessar-
ily synchronous). We have shown that the integral reciprocity
is not alone sufficient for convergence. Oscillatory behaviors
may take place. Thus, we provided a companion assumption
which assumes that, over intervals where reciprocity occurs,
the amount of interaction is always uniformly bounded.
Under these two assumptions, we have proven that the tra-
jectory to the consensus system always converges. Moreover,
consensus takes place among agents in clusters of the graph
of persistent interactions. We have also particularized our
result to a class of systems satisfying a local pairwise form
of reciprocity.

Apart from the integral reciprocity and uniform bound,
our result does not make any assumption on the interactions
between agents, and allows in particular for arbitrary long
periods during which the system is idle. As a consequence, it
is in general impossible to give absolute bounds on the speed
of convergence under the assumptions that we have made.
However, future works could relate the speed of convergence
to the amount of interactions having taken place in the
system, as in [18].
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